
Classifier Model for Intrusion Detection Using
Bio-inspired Metaheuristic Approach

P.Amudha#1, S.Karthik*2, S.Sivakumari#3

Department of CSE, Faculty of Engineering, Avinashilingam University
Coimbatore, Tamilnadu, India

* Department of CSE, SNS College of Technology,
 Coimbatore, Tamilnadu, India.

Abstract— In machine learning and statistics, feature selection
is the technique of selecting a subset of relevant features for
building robust learning models. In this paper we propose a
bio-inspired BAT algorithm as feature selection method to
find the optimal features from the KDDCup’99 intrusion
detection dataset obtained from UCI Machine Learning
repository. Neural Networks (NN) as a classifier collects data
randomly from the dataset and constructs a training dataset
with original records using bagging approach. The
performance of Neural Network with Repeated Incremental
Pruning to Produce Error Reduction (RIPPER) is compared
with the Neural Network with C4.5 decision tree and the
experimental result shows that the Neural Network with
RIPPER outperforms the other algorithm.

Keywords— Bio-inspired, RIPPER, bagging, decision tree,
KDDCup’99..

I. INTRODUCTION

Feature selection aims to find the most important
information from a given set of features and helps to have
better understanding about the data, important features and
relationship with each other. Feature selection improves the
overall accuracy, reduces the number of false alarms and
improves the detection rate of instances in the training data.
A feature selection algorithm is a blend of search methods
which proposes new feature subsets. Recently, bio-inspired
approaches such as swarm intelligence are used to solve
real-time complicated problems. The swarm intelligence
based algorithms inspired by the behaviour of animals has
been successfully applied to optimization, robotics and
military applications [1]. This paper aims to analyse the
effect of bat algorithm as feature selection method on
intrusion detection dataset and to study its effect on the
ensemble classifiers.

II. BACKGROUND STUDY

The wrapper method was first implemented by
R.Kohavi and G.H.John [2] for feature selection in machine
learning. Feature selection keeps the original features as
such and selects subset of features that predicts the target
class variable with maximum classification accuracy.
Srinivas Mukkamala and Sung [3], Ivor W. Tsang et al.,[4]
S.Chebrolu et al.,[5], Y. Chen et al. [6], T.P.Fries [7] and K.
Makkithaya et al.,[8] adopted AI-based feature selection
techniques for intrusion detection.

Evolutionary computation and swarm intelligence
techniques are great examples that nature has been a
continuous source of inspiration. The behaviour of bees,

ants, glow-worms, fireflies, fishes and other organisms have
inspired swarm intelligence researchers to devise new
optimization algorithms [3]. Xin-She Yang proposed a new
meta-heuristic method, Bat Algorithm, based on the
echolocation behaviour of bats [9][10]. R.S. Parpinelli,
H.S.Lopes discussed on swarm intelligence for growing
complexity of real-world problems which has motivated
computer scientists to search for efficient problem-solving
methods [1].

R.Y.M.Nakamura et al. applied bat algorithm as feature
selection technique [11]. Amir Hossein Gandomi, Xin-She
Yang [12] applied Bat algorithm to solve constraint
optimization tasks. The optimal solution obtained by bat
algorithm was found to be better than the best solutions
provided by other methods. Koffka Khan, Ashok Sahai
compared BA, GA, PSO, BP and LM for Training Feed
forward Neural Networks intended to show the superiority
of the new metaheuristic bat algorithm (BA) over other
more standard algorithms in neural network training [13].

Mathew Miller discussed on learning Cost-Sensitive
Classification Rules for Network Intrusion Detection using
RIPPER [14]. RIPPER was introduced by Cohen [15] as a
successor of the IREP algorithm for rule induction
(Fürnkranz and Widmer [16]). RIPPER offers a number of
modifications to IREP, C4.5, and C4.5 rules which have
proven to yield faster training times and lower error rates.
Komviriyavut, Sangkatsanee, Charnsripinyo[17] presented
two network intrusion detection (IDS) techniques which are
C4.5 decision tree and Ripper rules to assess and test an
online dataset(RLD09 dataset).

III. METHODOLOGY

A. Bat Algorithm
 Bat Algorithm is a relatively new population based
bio-inspired approach based on hunting behaviour of bats.
Bats are fascinating animals and they are the only mammals
with wings and which have advanced capability of
echolocation to detect prey, avoid obstacles and locate their
roosting crevices in the dark. These bats emit a very loud
sound pulse and listen for the echo that bounces back from
the surrounding objects. Their pulses vary in properties and
can be correlated with their hunting strategies, depending
on the species. Most bats use short, frequency-modulated
signals to sweep through about an octave, while others
more often use constant-frequency signals for echolocation.
Their signal bandwidth varies depends on the species, and
often increased by using more harmonics.

P.Amudha et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7637-7642

www.ijcsit.com 7637

 Inspired by the behaviour of bats, Yang [9][10] has
developed a new meta-heuristic optimization technique
called Bat Algorithm and has idealized some rules:

1. All bats use echolocation to sense distance, and they
also ‘know’ the difference between food/prey and
background barriers in some magical way;

2. Bats fly randomly with velocity iv at position ix

with a fixed frequency minf , varying wavelength λ

and loudness A0 to search for prey. They can
automatically adjust the wavelength (or frequency)
of their emitted pulses and adjust the rate of pulse
emission r ∈ [0, 1], depending on the proximity of
their target;

3. Although the loudness can vary in many ways, we
assume that the loudness varies from a large
(positive) A0 to a minimum constant value Amin.

The implementation of BA is more complicated than
many other meta-heuristic algorithms [1] because each
agent (bat) is assigned a set of interacting parameters
such as position, velocity, pulse rate, loudness, and
frequencies. This interaction affects the quality of a
solution and the time needed to obtain such solution.

The algorithm consists of the following components:

• initialization of parameters
• generation of new solutions
• local search
• generation of a new solution by flying randomly
• find the current best solution

B. Feature Selection Using Bat Algorithm
In this section, we present bio-inspired feature selection
approach using bat algorithm to find the best combination
of features. Bat algorithm can deal with problem of the high
dimensionality and finding the most informative features in
a search space. The algorithm has a capability of
automatically zooming into a region where promising
solutions have been found which accompanied by the
automatic switch from explorative moves to local intensive
exploitation. As a result, it has a quick convergence rate, at
least at early stages of the iterations compared with other
algorithms.

 Initially, each bat is randomly assigned a frequency which
is drawn uniformly from [ƒmin, ƒmax]. For the local search
part, once a solution is selected among the current best
solutions, a new solution for each bat will be generated
using equation (4).
 xnew = xold + ∈ At (4)

 where, ε ∈ [-1, 1] is a random number, while

T
i

T AA = is the average loudness of all the bats at this time

step. The loudness iA and the rate ir of pulse emission

have to be updated accordingly as the iterations proceed.

The bat algorithm [9][10] is given below:

B. Classification Using RIPPER

 A rule-based classifier is a method for classifying
examples using if ... then ... rules. On many problems rule
learning systems outperform decision tree learners and one
of the active techniques is Repeated Incremental Pruning to
Produce Error Reduction (RIPPER). RIPPER is an
optimized version of IREP. In REP algorithms, the training
data is split into a growing set and a pruning set. Using
some heuristic method, an initial rule set is formed and by
applying pruning operators, the rule set is simplified. At
each stage of simplification, the pruning operator chosen is
the one that yields the greatest reduction of error on the
pruning set. Simplification ends when applying any pruning
operator would increase error on the pruning set[17].
 A single RIPPER rule is of the form r = <rA,rC>,
consisting of a premise part rA and a consequent part rC.
The premise part rA is a conjunction of predicates (selectors)

which are of the form (A = iv) for nominal and (iA θ iv)

for numerical attributes, where }{ ≥≈≤∈ ,,θ and

iv ∈ iD . The consequent part Cr is a class assignment of

the form (class = l). A rule r = CA rr , is said to cover an

instance x = ()nxx1 if the attribute values ix satisfy

all the predicates in Ar .

Objective function ƒ(x), x= ()T
dxx ,....1

Initialize the bat population ix =(i = 1,2…n) and iv

Define Pulse frequency if at ix

Initialize the rates ir and the loudness iA

While (t < Max number of iterations)
Generate new solutions by adjusting frequency,
updating velocities and locations/solutions

()βminmaxmin ffffi −+= (1)

() i
t
i

t
i

t
i fxxvv ∗− −+= 1

 (2)
t
i

t
i

t
i vxx += −1

 (3)

If (rand > ir) then

Select a solution among the best solutions
Generate a local solution around the selected best
solution
End if
Generate a new solution by flying randomly

If (rand < iA & ƒ(ix) < ƒ(∗x)) then

Accept the new solutions

Increase ir and reduce iA

end if

Rank the bats and find the current best ∗x

end while
Post process results and visualization

P.Amudha et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7637-7642

www.ijcsit.com 7638

 Each individual rule is learned in two steps. The
training data, which has not yet been covered by any rule, is
therefore split into a growing and a pruning set. In the first
step, the rule will be specialized by adding antecedents
which were learned using the growing set. Afterward, the
rule will be generalized by removing antecedents using the
pruning set. When RIPPER learns a rule for a given class,
the examples of that class are denoted as positive instances,
whereas the examples from the remaining classes are
denoted as negative instances [18]-[20].

C. Enhanced RIPPER Using Neural Network Ensemble

Neural Network (NN) consists of input layer with
number of input nodes equal to the number of selected
features and the output layer based on number classes used.
The output of each node is propagated from the input layer
through the hidden layer to the output layer. The output
node with the highest value is chosen and its corresponding
class is named as its output. As neural network and decision
tree are unstable classifiers bagging approach is employed.
Bagging creates a training dataset by sampling with
replacement ‘n’ times from the dataset containing ‘n’
records.
 The trained neural network ensemble is employed to
generate a new training data by replacing the desired class
labels of the original training data, with those output from
the trained NN ensemble. The network pattern is identified
based on the predicted output from each of the NN using
voting algorithm. Voting algorithm chooses the class label
receiving most number of votes as the final output of the
ensemble.
 In Learning process, the training data of the neural
network is sorted by class labels in the ascending order and
the corresponding class frequencies also defined. In that
Rules are then learned for the first m-1 classes, starting with
the smallest one. Once the rules are generated from the
training data in the neural network, then the instances
covered by that rule are removed from the training set in the
neural network. Then process continues until all the training
samples or training data creates the rules. The algorithm
then proceeds with the next class. Finally, when RIPPER
finds no more rules to learn, a default rule (with empty
antecedent) is added for the last (and hence most frequent)
class. In this algorithm, rules are added based on the
information gain measure.

IV. DATASET DESCRIPTION

In this section we discuss the intrusion detection dataset
KDDCup’99[21], which was derived from the 1998
DARPA Intrusion detection Evaluation program prepared
and managed
by MIT Lincoln Laboratory. The dataset is a collection of
simulated raw TCP dump data over a period of nine weeks
for a LAN simulating a typical U.S. Air Force LAN. There
are 4,898,430 labeled and 311,029 unlabeled connection
records in the dataset. The labeled connection records
consist of 41 attributes. . The detail of attacks of labeled
records of KDDCup’99 dataset is given in Table I.

TABLE I
DETAILS OF ATTACKS OF LABELLED RECORDS

Category of attack Attack Name

 Normal Normal

 DoS
 Neptune, Smurf, Pod, Teardrop, Land,
back

 Probe Portsweep, Ipsweep, Nmap, satan

 U2R
 Bufferoverflow, LoadModule, Perl,
Rootkit

 R2L
Guesspassword, Ftpwrite, Imap, Phf,
Multihop, Warezmaster, Warezclient

The complete listing of the set of features in the dataset

is given in Table II, where c and s represents continuous
and symbolic respectively.

TABLE III
SET OF FEATURES OF KDDCUP’99 DATASET

F
No.

Name of the feature F
No.

Name of the feature

1 duration (c) 22 is_guest_login (s)
2 protocol_type (s) 23 count (c)
3 service (s) 24 srv_count (c)
4 flag (s) 25 serror_rate (c)
5 src_bytes (c) 26 srv_serror_rate (c)
6 dst_bytes (c) 27 rerror_rate (c)
7 land (s) 28 srv_serror_rate (c)
8 wrong_fragment (c) 29 same_srv_rate (c)
9 urgent (c) 30 diff_srv_rate (c)
10 hot (c) 31 srv_diff_host_rate (c)
11 num_failed_logins

(c)
32 dst_host_count (c)

12 logged_in (s) 33 dst_host_srv_count (c)
13 num_compromised

(c)
34 dst_host_same_srv_rate

(c)
14 root_shell (c) 35 dst_host_diff_srv-rate (c)
15 su_attempted (c) 36 dst_host_same_srv_port_

rate (c)
16 num_root (c) 37 dst_host_srv_diff_host_

rate (c)
17 num_file_creations

(c)
38 dst_host_serror_rate (c)

18 num_shells (c) 39 dst_host_srv_serror_rate
(c)

19 num_access_files (c) 40 dst_host_rerror_rate (c)
20 num_outbound_cmd

(c)
41 dst_host_srv_rerror_rate

(c)
21 is_host_login (s)

The dataset consists of one type of normal data and 22

different attack types categorized into 4 classes namely:
Denial of Service (DoS), Probe, User-to-Root (U2R),
Remote-to-Login (R2L).
 Denial of Service (DoS): Attacker tries to prevent

legitimate users from using a service.
 Probe: Attacker tries to gain information about the

target host.
 User-to-Root (U2R): Attacker has local access to

victim machine and tries to gain super user privileges.
 Remote-to-Login (R2L): Attackers does not have an

account on the victim machine. Hence tries to gain
access.

P.Amudha et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7637-7642

www.ijcsit.com 7639

V. RESULTS AND DISCUSSIONS

A. Experimental Setup
We performed our experiment using 10% of the overall

KDD Cup’99 labelled dataset which contains 4, 94,020
records having 41 features. The distribution of connections
types in KDD99 10% training dataset is given in Table III.
One of the most important deficiencies in the KDDCup
dataset is the large number of redundant instances, which
causes the learning algorithms to be biased towards the
frequent instances and prevent learning from infrequent
instances which are harmful to networks. Hence duplicate
instances are removed and selected random sample of 10%
normal data and 10% Neptune attack in DoS class. They
include 8783 normal instances, 7935 DoS instances, 2131
Probe instances, 52 U2R instances and 999 R2L instances.
Four new sets of data are generated with the normal class
and four categories of attack (DoS, Probe, U2R, and R2L).
In each data set, instances with the same attack category
and 10% normal instances are included, where each dataset
has its own distribution of categories of instances [22].

TABLE IIIII
DISTRIBUTION OF CONNECTION TYPES IN KDDCUP99 10% TRAINING

DATASET

Class Number of
records

Percentage of
occurrence

Normal
DoS

Probe
U2R
R2L

97,277
391,458
4,107

52
1,126

19.69
79.24
0.83
0.01
0.23

Total 494,020 100.00

The performance metrics like accuracy, detection
rate, false alarm rate, precision are recorded for the
classification algorithm and the formulae to calculate is
given in equations (5) to (8):

Accuracy = (TP + TN) / (TP + FP + TN + FN) (5)

Detection Rate = TP / (TP + FN) (6)

False Alarm Rate = FP / (TN + FP) (7)

Precision = TP / (TP + FP) (8)

• True Positive (TP) is the number of attacks
correctly classified

• True Negative (TN) is the number of normal
records correctly classified

• False Positive (FP) is the number of normal
records incorrectly classified

• False Negative (FN) is the number of attacks
incorrectly classified

The composition of dataset and number of features selected
using the bio-inspired bat algorithm is shown in Table IV.
The experimental result for the neural network with
RIPPER is shown in Table V.

TABLE IV
COMPOSITION OF DATASET USING BAT ALGORITHM

Dataset No. of
i t

No. of reduced
f t

Normal+DoS 16718 14

Normal+Probe 10914 17

Normal+ U2R 8835 17

Normal+R2L 10782 16

Fig. 1 shows the graphical representation of

accuracy of the classifiers on all datasets. The results show
that neural network with RIPPER have higher accuracy of
95.15% on DoS+10%Normal dataset when compared to the
other datasets. Also it is observed that neural network with
RIPPER outperforms the other method in terms of accuracy
(95.91% in Dos+10%Normal, 94.59% in
Probe+10%normal dataset, 94.60% in R2L+10%normal
and 94.70% U2R+10%normal).

Fig. 2 shows that the hybridization of neural
network with RIPPER on DoS+10%Normal dataset have
the highest detection rate of 95.15% when compared to the
other dataset and it obtains high detection rate than decision
tree. The graphical representation of False alarm rate is
given in Fig. 3. It is shown that the neural network with
RIPPER on Probe+10%Normal dataset have the lowest
false alarm rate of 0.0484% when compared to the other
datasets. Compared to decision tree approach, false alarm
rate is lower for neural network with RIPPER (0.0484% in
Dos +10%Normal, 0.0540% in Probe+10%normal dataset,
0.0529% in R2L+10%normal and 0.0539% in
U2R+10%normal).

Fig. 4 shows that the neural network with RIPPER
on probe+10%Normal and U2R+10% normal datasets have
the highest precision of 96.98% when compared to the other
datasets and is also higher on all datasets when compared to
decision tree method (96.52% in Dos+10%Normal, 96.98%
in Probe+10%Normal dataset, 96.89% in R2L+10%Normal
and 96.98% U2R+10%Normal).

TABLE V
EXPERIMENTAL ANALYSIS OF NN-RIPPER

Dataset Accuracy (in %) Detection Rate (in %) False Alarm rate(in %) Precision (in %)

DoS+10%Normal 95.15 95.15 0.0484 96.33

Probe+10%Normal 94.59 94.59 0.0540 96.89

U2R+10%Normal 94.70 94.70 0.0529 96.79

DoS+10%Normal 94.60 94.60 0.0539 96.87

P.Amudha et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7637-7642

www.ijcsit.com 7640

Fig. 1 Accuracy Comparison

Fig. 2 Detection rate comparison

Fig. 3 False alarm rate comparison

Fig. 4 Precision comparison

VI. CONCLUSION

P.Amudha et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7637-7642

www.ijcsit.com 7641

In this paper, we have presented a metaheuristic
bio-inspired approach to select the best features for
detecting intrusions. We have studied the impact of features
selected using BAT algorithm. We have also analyzed the
performance of a Neural Network-RIPPER ensemble
classifier on KDDCup’99 dataset and compared it with
Neural Network-Decision tree classifier. RIPPER utilized
the trained rules from neural network and finally it learns a
rule for a given class. It is used to maximize the information
gain and number of rules to cover the non- negative rates.
The results show that the Neural network with RIPPER
achieves better classification accuracy, highest detection
rate and lowest false alarm rate of the Intrusion Detection
Systems.

REFERENCES
[1] Parpinelli R.S, Lopes H.,. New inspirations in swarm intelligence: a

survey. International Journal of Bio-Inspired Computations, 3(1),
pp.1-16, 2011.

[2] Kohavi R, John G.H., Wrappers for feature subset selection,
Artificial Intelligence, l(2),pp. 273-324, 1997.

[3] Mukkamala S, Janoski G, Sung A, Intrusion Detection: Support
Vector Machines and Neural Networks. IEEE International Joint
Conference on Neural Networks, St. Louis. MO. IEEE Computer
Society Press, pp. 1702-1707, 2002.

[4] Ivor W. Tsang, James T. Kwok, Pak-Ming Cheung, Core Vector
Machines: Fast SVM Training on Very Large Data Sets. Journal of
Machine Learning Research,. 6,pp.363–392, 2005.

[5] Chebrolu S, Abraham A, Thomas J. P., Feature Deduction and
Ensemble Design of Intrusion Detection Systems. Computers and
Security, 24, pp.295–307, 2005.

[6] Chen, Y. Li, X-Q. Cheng and L. Guo. Survey and Taxonomy of
Feature Selection Algorithms in Intrusion Detection System,
Information Security and Cryptology, pp. 153–167, 2006.

[7] Fries T.P, A fuzzy-genetic approach to network intrusion detection,
ECCO conference companion on Genetic and evolutionary
computation, ACM. New York, pp.2141–2146, 2008.

[8] Makkithaya K, Reddy N.V.S, Acharya U.D, Improved C-Fuzzy
Decision Tree for Intrusion Detection, World Academy of Science,
Engineering and Technology, 42, pp. 273–277, 2008.

[9] Yang X.-S, A New Metaheuristic Bat-Inspired Algorithm, in:
Nature Inspired Cooperative Strategies for Optimization (NISCO
2010) Studies in Computational Intelligence, Springer
Berlin ,pp.65-74, 2010.

[10] Yang X.-S, Bat algorithm for multi-objective optimisation.
International Journal of Bio-Inspired Computation, 3(5) pp. 267–
274, 2011.

[11] R. Y. M. Nakamura, L. A. M. Pereira, K. A. Costa, D. Rodrigues, J.
P. Papa X.-S. Yang,“BBA: A Binary Bat Algorithm for Feature
Selection” Neural Comput & Application, DOI 10.1007/s00521-
012-1028-9

[12] Amir Hossein Gandomi, Xin-She Yang,, “Bat algorithm for
constrained optimization tasks”, Springer-Verlag, 2012, DOI:
10.1007/s00521012-1028-9.

[13] Koffka Khan, Ashok Sahai,, “A Comparison of BA, GA, PSO, BP
and LM for Training Feed forward Neural Networks in e-Learning
Context”, Intl. Journal of Intelligent Systems and Applications,7,
pp.23-29, 2012.

[14] Mathew Miller, “Learning Cost-Sensitve Classification Rules for
Network Intrusion Detection using RIPPER”, Advanced Intelligent
Systems, Springer, 1999.

[15] Cohen, W., ” Fast effective rule induction”, In Proc. of the 12th
International Conference on Machine Learning, ICML, pp.115– 123.
Morgan Kaufmann, 1995.

[16] Fürnkranz, J. and Widmer, G., “Incremental reduced error pruning”,
In Proceedings the 11th International Conference on Machine
Learning, ICML, pp. 70–77, 1994.

[17] Komviriyavu Makkithaya K., N.V.S. Reddy and U.D. Acharya,
“Improved C-Fuzzy Decision Tree for Intrusion Detection”, In Proc.
World Academy of Science, Engineering and Technology, vol. 32,
pp. 279–283, 2008.

[18] Ian H Witten, Eibe Frank., Data Mining: Practical machine learning
tools and techniques. Second Edition, Morgan Kaufmann
Publication, 2005.

[19] J. Han and M. Kamber, “Data Mining: Concepts and Techniques,”
Morgan Kaufmann, 2006.

[20] Tan Pang-Ning, Michael Steinbach and Vipin Kumar, Introduction
to Data Mining. Pearson Education, 2006.

[21] KDDCup 1999 data. http://kdd.ics.uci.edu/ Databases/kddcup99/10
percent.gz.

[22] P Amudha, H Abdul Rauf, “Performance Analysis of Data Mining
Approaches in Intrusion Detection”, In Proc. of IEEE Conference
on Process Automation Control and computing, pp.9-16, 2011.

P.Amudha et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7637-7642

www.ijcsit.com 7642

