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Abstract— In machine learning and statistics, feature selection 
is the technique of selecting a subset of relevant features for 
building robust learning models. In this paper we propose a    
bio-inspired BAT algorithm as feature selection method to 
find the optimal features from the KDDCup’99 intrusion 
detection dataset obtained from UCI Machine Learning 
repository. Neural Networks (NN) as a classifier collects data 
randomly from the dataset and constructs a training dataset 
with original records using bagging approach. The 
performance of Neural Network with Repeated Incremental 
Pruning to Produce Error Reduction (RIPPER) is compared 
with the Neural Network with C4.5 decision tree and the 
experimental result shows that the Neural Network with 
RIPPER outperforms the other algorithm. 
 
Keywords— Bio-inspired, RIPPER, bagging, decision tree, 
KDDCup’99.. 

I. INTRODUCTION 

Feature selection aims to find the most important 
information from a given set of features and helps to have 
better understanding about the data, important features and 
relationship with each other. Feature selection improves the 
overall accuracy, reduces the number of false alarms and 
improves the detection rate of instances in the training data. 
A feature selection algorithm is a blend of search methods 
which proposes new feature subsets. Recently, bio-inspired 
approaches such as swarm intelligence are used to solve    
real-time complicated problems. The swarm intelligence 
based algorithms inspired by the behaviour of animals has 
been successfully applied to optimization, robotics and 
military applications [1]. This paper aims to analyse the 
effect of  bat algorithm as feature selection method on 
intrusion detection dataset and to study its effect on the 
ensemble classifiers. 

II. BACKGROUND STUDY 

The wrapper method was first implemented by 
R.Kohavi and G.H.John [2] for feature selection in machine 
learning.  Feature selection keeps the original features as 
such and selects subset of features that predicts the target 
class variable with maximum classification accuracy. 
Srinivas Mukkamala and Sung [3], Ivor W. Tsang et al.,[4] 
S.Chebrolu et al.,[5], Y. Chen et al. [6], T.P.Fries [7] and K. 
Makkithaya et al.,[8] adopted AI-based feature selection 
techniques for intrusion detection. 

Evolutionary computation and swarm intelligence 
techniques are great examples that nature has been a 
continuous source of inspiration. The behaviour of bees, 

ants, glow-worms, fireflies, fishes and other organisms have 
inspired swarm intelligence researchers to devise new 
optimization algorithms [3]. Xin-She Yang proposed a new 
meta-heuristic method, Bat Algorithm, based on the 
echolocation behaviour of bats [9][10]. R.S. Parpinelli, 
H.S.Lopes discussed on swarm intelligence for growing 
complexity of real-world problems which has motivated 
computer scientists to search for efficient problem-solving 
methods [1].  

R.Y.M.Nakamura et al. applied bat algorithm as feature 
selection technique [11]. Amir Hossein Gandomi, Xin-She 
Yang [12] applied Bat algorithm to solve constraint 
optimization tasks. The optimal solution obtained by bat 
algorithm was found to be better than the best solutions 
provided by other methods. Koffka Khan, Ashok Sahai 
compared BA, GA, PSO, BP and LM for Training Feed 
forward Neural Networks intended to show the superiority 
of the new metaheuristic bat algorithm (BA) over other 
more standard algorithms in neural network training [13]. 

Mathew Miller discussed on learning Cost-Sensitive 
Classification Rules for Network Intrusion Detection using 
RIPPER [14]. RIPPER was introduced by Cohen [15] as a 
successor of the IREP algorithm for rule induction 
(Fürnkranz and Widmer [16]). RIPPER offers a number of 
modifications to IREP, C4.5, and C4.5 rules which have 
proven to yield faster training times and lower error rates. 
Komviriyavut, Sangkatsanee, Charnsripinyo[17] presented 
two network intrusion detection (IDS) techniques which are 
C4.5 decision tree and Ripper rules to assess and test an 
online dataset(RLD09 dataset). 

III. METHODOLOGY 

A. Bat Algorithm 
     Bat Algorithm is a relatively new population based        
bio-inspired approach based on hunting behaviour of bats.  
Bats are fascinating animals and they are the only mammals 
with wings and which have advanced capability of 
echolocation to detect prey, avoid obstacles and locate their 
roosting crevices in the dark. These bats emit a very loud 
sound pulse and listen for the echo that bounces back from 
the surrounding objects. Their pulses vary in properties and 
can be correlated with their hunting strategies, depending 
on the species. Most bats use short, frequency-modulated 
signals to sweep through about an octave, while others 
more often use constant-frequency signals for echolocation. 
Their signal bandwidth varies depends on the species, and 
often increased by using more harmonics. 
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     Inspired by the behaviour of bats, Yang [9][10] has 
developed a new meta-heuristic optimization technique 
called Bat Algorithm and has idealized some rules: 
 

1. All bats use echolocation to sense distance, and they 
also ‘know’ the difference between  food/prey and 
background barriers in some magical way; 

2. Bats fly randomly with velocity iv  at position ix  

with a fixed frequency minf , varying wavelength λ  

and loudness A0 to search for prey. They can 
automatically adjust the wavelength (or frequency) 
of their emitted pulses and adjust the rate of pulse 
emission r ∈  [0, 1], depending on the proximity of 
their target; 

3. Although the loudness can vary in many ways, we 
assume that the loudness varies from a large 
(positive) A0 to a minimum constant value Amin. 
 

The implementation of BA is more complicated than 
many other meta-heuristic algorithms [1] because each 
agent (bat) is assigned a set of interacting parameters 
such as position, velocity, pulse rate, loudness, and 
frequencies. This interaction affects the quality of a 
solution and the time needed to obtain such solution. 
 
The algorithm consists of the following components: 

• initialization  of parameters 
• generation of new solutions  
• local search  
• generation of a new solution by flying randomly 
• find the current best solution 

B. Feature Selection Using Bat Algorithm 
In this section, we present bio-inspired feature selection 
approach using bat algorithm to find the best combination 
of features. Bat algorithm can deal with problem of the high 
dimensionality and finding the most informative features in 
a search space. The algorithm has a capability of 
automatically zooming into a region where promising 
solutions have been found which accompanied by the 
automatic switch from explorative moves to local intensive 
exploitation. As a result, it has a quick convergence rate, at 
least at early stages of the iterations compared with other 
algorithms.  

 Initially, each bat is randomly assigned a frequency which 
is drawn uniformly from [ƒmin, ƒmax]. For the local search 
part, once a solution is selected among the current best 
solutions, a new solution for each bat will be generated 
using equation (4).  
               xnew = xold + ∈  At     (4) 
 
  where, ε ∈ [-1, 1] is a random number, while 

T
i

T AA =  is the average loudness of all the bats at this time 

step. The loudness iA  and the rate ir  of pulse emission 

have to be updated accordingly as the iterations proceed.  
 

The bat algorithm [9][10] is given below: 

 

B. Classification Using RIPPER 

 A rule-based classifier is a method for classifying 
examples using if ... then ... rules. On many problems rule 
learning systems outperform decision tree learners and one 
of the active techniques is Repeated Incremental Pruning to 
Produce Error Reduction (RIPPER). RIPPER is an 
optimized version of IREP. In REP algorithms, the training 
data is split into a growing set and a pruning set. Using 
some heuristic method, an initial rule set is formed and by 
applying pruning operators, the rule set is simplified. At 
each stage of simplification, the pruning operator chosen is 
the one that yields the greatest reduction of error on the 
pruning set. Simplification ends when applying any pruning 
operator would increase error on the pruning set[17].  
 A single RIPPER rule is of the form r = <rA,rC>, 
consisting of a premise part rA and a consequent part rC. 
The premise part  rA is a conjunction of predicates (selectors) 

which are of the form (A = iv ) for nominal and ( iA θ iv ) 

for numerical attributes, where  }{ ≥≈≤∈ ,,θ  and  

iv ∈ iD  . The consequent part Cr  is a class assignment of 

the form (class = l ). A rule r = CA rr ,  is said to cover an 

instance     x = ( )nxx ......1  if the attribute values ix  satisfy 

all the predicates in Ar .  

Objective function ƒ(x),  x= ( )T
dxx ,....1  

Initialize the bat population ix =(i = 1,2…n) and iv  

Define Pulse frequency if  at ix  

Initialize the rates ir  and the loudness iA  

While (t < Max number of iterations) 
Generate new solutions by adjusting frequency, 
updating velocities and locations/solutions 

( )βminmaxmin ffffi −+=               (1) 

( ) i
t
i

t
i

t
i fxxvv ∗− −+= 1

                    (2) 
t
i

t
i

t
i vxx += −1

                                  (3) 

If (rand > ir ) then 

Select a solution among the best solutions 
Generate a local solution around the selected best 
solution 
End if 
Generate a new solution by flying randomly 

If (rand < iA   & ƒ( ix ) < ƒ( ∗x )) then 

Accept the new solutions 

Increase ir  and reduce iA  

end if 

Rank the bats and find the current best ∗x  

end while 
Post process results and visualization 

P.Amudha et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7637-7642

www.ijcsit.com 7638



 Each individual rule is learned in two steps. The 
training data, which has not yet been covered by any rule, is 
therefore split into a growing and a pruning set. In the first 
step, the rule will be specialized by adding antecedents 
which were learned using the growing set. Afterward, the 
rule will be generalized by removing antecedents using the 
pruning set. When RIPPER learns a rule for a given class, 
the examples of that class are denoted as positive instances, 
whereas the examples from the remaining classes are 
denoted as negative instances [18]-[20]. 
 
C. Enhanced RIPPER Using Neural Network Ensemble 

Neural Network (NN) consists of input layer with 
number of input nodes equal to the number of selected 
features and the output layer based on number classes used. 
The output of each node is propagated from the input layer 
through the hidden layer to the output layer. The output 
node with the highest value is chosen and its corresponding 
class is named as its output. As neural network and decision 
tree are unstable classifiers bagging approach is employed. 
Bagging creates a training dataset by sampling with 
replacement ‘n’ times from the dataset containing ‘n’ 
records. 
 The trained neural network ensemble is employed to 
generate a new training data by replacing the desired class 
labels of the original training data, with those output from 
the trained NN ensemble. The network pattern is identified 
based on the predicted output from each of the NN using 
voting algorithm. Voting algorithm chooses the class label 
receiving most number of votes as the final output of the 
ensemble.  
 In Learning process, the training data of the neural 
network is sorted by class labels in the ascending order and 
the corresponding class frequencies also defined. In that 
Rules are then learned for the first m-1 classes, starting with 
the smallest one. Once the rules are generated from the 
training data in the neural network, then the instances 
covered by that rule are removed from the training set in the 
neural network. Then process continues until all the training 
samples or training data creates the rules. The algorithm 
then proceeds with the next class. Finally, when RIPPER 
finds no more rules to learn, a default rule (with empty 
antecedent) is added for the last (and hence most frequent) 
class. In this algorithm, rules are added based on the 
information gain measure. 

IV. DATASET DESCRIPTION 

In this section we discuss the intrusion detection dataset 
KDDCup’99[21], which was derived from the 1998 
DARPA Intrusion detection Evaluation program prepared 
and managed  
by MIT Lincoln Laboratory. The dataset is a collection of 
simulated raw TCP dump data over a period of nine weeks 
for a LAN simulating a typical U.S. Air Force LAN. There 
are 4,898,430 labeled and 311,029 unlabeled connection 
records in the dataset. The labeled connection records 
consist of 41 attributes. . The detail of attacks of labeled 
records of KDDCup’99 dataset is given in Table I. 
 
 

TABLE I 
DETAILS OF ATTACKS OF LABELLED RECORDS 

Category of attack Attack Name 

           Normal  Normal 

           DoS 
 Neptune, Smurf, Pod, Teardrop, Land, 
back 

           Probe  Portsweep, Ipsweep, Nmap, satan 

           U2R 
 Bufferoverflow, LoadModule, Perl, 
Rootkit 

           R2L 
Guesspassword, Ftpwrite, Imap, Phf, 
Multihop, Warezmaster, Warezclient 

 
The complete listing of the set of features in the dataset 

is given in Table II, where c and s represents continuous 
and symbolic respectively.  

TABLE III 
SET OF FEATURES OF KDDCUP’99 DATASET 

F 
No. 

Name of the feature F 
No. 

Name of the feature 

1 duration (c) 22 is_guest_login (s) 
2 protocol_type (s) 23 count (c) 
3 service (s) 24 srv_count (c) 
4 flag (s) 25 serror_rate (c) 
5 src_bytes (c) 26 srv_serror_rate (c) 
6 dst_bytes (c) 27 rerror_rate (c) 
7 land (s) 28 srv_serror_rate (c) 
8 wrong_fragment (c) 29 same_srv_rate (c) 
9 urgent (c) 30 diff_srv_rate (c) 
10 hot (c) 31 srv_diff_host_rate (c) 
11 num_failed_logins 

(c) 
32 dst_host_count (c) 

12 logged_in (s)  33 dst_host_srv_count (c) 
13 num_compromised 

(c) 
34 dst_host_same_srv_rate 

(c) 
14 root_shell (c) 35 dst_host_diff_srv-rate (c) 
15 su_attempted (c) 36 dst_host_same_srv_port_ 

rate (c) 
16 num_root (c) 37 dst_host_srv_diff_host_ 

rate (c) 
17 num_file_creations 

(c) 
38 dst_host_serror_rate (c) 

18 num_shells (c) 39 dst_host_srv_serror_rate 
(c) 

19 num_access_files (c) 40 dst_host_rerror_rate (c) 
20 num_outbound_cmd 

(c) 
41 dst_host_srv_rerror_rate 

(c) 
21 is_host_login (s) 
 
The dataset consists of one type of normal data and 22 

different attack types categorized into 4 classes namely: 
Denial of Service (DoS), Probe, User-to-Root (U2R), 
Remote-to-Login (R2L).  
 Denial of Service (DoS): Attacker tries to prevent 

legitimate users from using a service. 
  Probe: Attacker tries to gain information about the 

target host. 
 User-to-Root (U2R): Attacker has local access to 

victim machine and tries to gain super user privileges. 
 Remote-to-Login (R2L): Attackers does not have an 

account on the victim machine. Hence tries to gain 
access. 
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V. RESULTS AND DISCUSSIONS 

A. Experimental Setup 
We performed our experiment using 10% of the overall 

KDD Cup’99 labelled dataset which contains 4, 94,020 
records having 41 features. The distribution of connections 
types in KDD99 10% training dataset is given in Table III. 
One of the most important deficiencies in the KDDCup 
dataset is the large number of redundant instances, which 
causes the learning algorithms to be biased towards the 
frequent instances and prevent learning from infrequent 
instances which are harmful to networks. Hence duplicate 
instances are removed and selected random sample of 10% 
normal data and 10% Neptune attack in DoS class. They 
include 8783 normal instances, 7935 DoS instances, 2131 
Probe instances, 52 U2R instances and 999 R2L instances. 
Four new sets of data are generated with the normal class 
and four categories of attack (DoS, Probe, U2R, and R2L). 
In each data set, instances with the same attack category 
and 10% normal instances are included, where each dataset 
has its own distribution of categories of instances [22].  

TABLE IIIII 
DISTRIBUTION OF CONNECTION TYPES IN KDDCUP99 10% TRAINING 

DATASET  

Class Number of 
records 

Percentage of 
occurrence 

Normal 
DoS 

Probe 
U2R 
R2L 

97,277 
391,458 
4,107 

52 
1,126 

19.69 
79.24 
0.83 
0.01 
0.23 

Total 494,020 100.00 
 

The performance metrics like accuracy, detection 
rate, false alarm rate, precision are recorded for the 
classification algorithm and the formulae to calculate is 
given in equations (5) to (8):  
 
Accuracy = (TP + TN) / (TP + FP + TN + FN) (5) 

Detection Rate = TP / (TP + FN)   (6) 

False Alarm Rate = FP / (TN + FP)   (7) 

Precision = TP / (TP + FP)    (8) 

• True Positive (TP) is the number of attacks 
correctly classified 

• True Negative (TN) is the number of normal 
records correctly classified 

• False Positive (FP) is the number of normal 
records incorrectly classified 

• False Negative (FN) is the number of attacks 
incorrectly classified 

 
The composition of dataset and number of features selected 
using the bio-inspired bat algorithm is shown in Table IV. 
The experimental result for the neural network with 
RIPPER is shown in Table V. 

TABLE IV 
COMPOSITION OF DATASET  USING BAT ALGORITHM  

Dataset No. of  
i t

No. of reduced 
f t

Normal+DoS 16718 14 

Normal+Probe 10914 17 

Normal+ U2R 8835 17 

Normal+R2L 10782 16 

 
Fig. 1 shows the graphical representation of 

accuracy of the classifiers on all datasets. The results show 
that neural network with RIPPER have higher accuracy of 
95.15% on DoS+10%Normal dataset when compared to the 
other datasets. Also it is observed that neural network with 
RIPPER outperforms the other method in terms of accuracy 
(95.91% in Dos+10%Normal, 94.59% in 
Probe+10%normal dataset, 94.60% in R2L+10%normal 
and 94.70% U2R+10%normal). 

Fig. 2 shows that the hybridization of neural 
network with RIPPER on DoS+10%Normal dataset have 
the highest detection rate of 95.15% when compared to the 
other dataset and it obtains high detection rate than decision 
tree. The graphical representation of False alarm rate is 
given in Fig. 3. It is shown that the neural network with 
RIPPER on Probe+10%Normal dataset have the lowest 
false alarm rate of 0.0484% when compared to the other 
datasets. Compared to decision tree approach, false alarm 
rate is lower for neural network with RIPPER (0.0484% in 
Dos +10%Normal, 0.0540% in Probe+10%normal dataset, 
0.0529% in R2L+10%normal and 0.0539% in 
U2R+10%normal).  

Fig. 4 shows that the neural network with RIPPER 
on probe+10%Normal and U2R+10% normal datasets have 
the highest precision of 96.98% when compared to the other 
datasets and is also higher on all datasets when compared to 
decision tree method (96.52% in Dos+10%Normal, 96.98% 
in Probe+10%Normal dataset, 96.89% in R2L+10%Normal 
and 96.98% U2R+10%Normal). 

 

TABLE V 
EXPERIMENTAL ANALYSIS OF NN-RIPPER  

Dataset Accuracy (in %) Detection Rate (in %) False Alarm rate( in %) Precision (in %) 

DoS+10%Normal 95.15 95.15 0.0484 96.33 

Probe+10%Normal 94.59 94.59 0.0540 96.89 

U2R+10%Normal 94.70 94.70 0.0529 96.79 

DoS+10%Normal 94.60 94.60 0.0539 96.87 
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Fig. 1 Accuracy Comparison 

 

 
Fig. 2 Detection rate comparison 

 

 
Fig. 3 False alarm rate comparison 

 

 
Fig. 4 Precision comparison 

 

VI. CONCLUSION 
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In this paper, we have presented a metaheuristic   
bio-inspired approach to select the best features for 
detecting intrusions. We have studied the impact of features 
selected using BAT algorithm. We have also analyzed the 
performance of a Neural Network-RIPPER ensemble 
classifier on KDDCup’99 dataset and compared it with 
Neural Network-Decision tree classifier. RIPPER utilized 
the trained rules from neural network and finally it learns a 
rule for a given class. It is used to maximize the information 
gain and number of rules to cover the non- negative rates. 
The results show that the Neural network with RIPPER 
achieves better classification accuracy, highest detection 
rate and lowest false alarm rate of the Intrusion Detection 
Systems. 
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